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Abstract

In this paper we discuss the content of the paper Sampling from the posterior distribution

in generalized linear mixed models (1996) by Dani Gamerman. The paper outlines a clever

way to obtain a proposal distribution to be used in a single Metropolis-Hastings iteration

that is a good approximation to the true posterior distribution. As a result of this method,

computation time can be greatly reduced and the framework allows for many situations,

including models with random effects.

1 Introduction

Bayesian statistics has evolved into a widely used field of statistics. The holy grail of a

Bayesian is the posterior distribution for a parameter of interest. However, in many situa-

tions this distribution is not recognizable and as a result, Bayesian statistics requires various

sampling techniques to remedy this. One such technique is the Metroplis-Hastings algorithm

in which a new value of the parameter is proposed from some proposal distribution, and then

decided if it should be kept or discarded. While this algorithm can work very well and theo-

retically the proposal distribution does not matter up to a few assumptions, the convergence

rate of the algorithm does rely on the proposal distribution. To this end, one should seek

a good proposal distribution. Of course, there are many good proposal distributions that

could be used, but we review the one proposed by Dani Gamerman in section 2.4.
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2 Methods

2.1 Bayesian Inference

Bayesian techniques combine a priori information and data by the use of Baye’s rule to obtain

a posterior distribution. The a priori information specifies a prior distribution, denoted π(θ),

that uses a person’s belief of the true value of the parameters. The data specifies a likelihood

function when given the unknown parameters, denoted f(y|θ). Notice that these are both

functions of the parameters of interest and we can apply Baye’s rule to formulate the posterior

distribution as follows

f(θ|y) =
f(y|θ)π(θ)

f(y)
=

f(y|θ)π(θ)∫
Θ
f(y|θ)π(θ)dθ

∝ f(y|θ)π(θ).

Generally, we can simplify the work by finding the distribution that is proportional to the

posterior distribution, and then integrating over the entire parameter space while setting

equal to one to find the normalizing constant. The posterior distribution is an update of

the prior distribution after observing the data. Seldomly, the posterior distribution can be

recognized as a known distribution, and in this case you can report posterior quantities such

as the posterior mean, posterior mode, and posterior credible intervals of θ. Unfortunately

in most situations the posterior distribution is not of any known form. Therefore, we turn to

Markov chain Monte Carlo (MCMC), which is comprised of a set of sampling algorithms that

empirically estimate the posterior distribution. One such algorithm is called the Metropolis-

Hastings algorithm, which we discuss next.

2.2 Metroplis-Hastings

Metropolis–Hastings is an MCMC technique that can be used when the posterior distribution

is not recognizable. Suppose that we have an initial value of our parameters, θ(0). If we

propose a new value θ? from some proposal distribution, say Jθ? , then an intuitive idea is to

include this value in our sample if the posterior density of this proposed value is larger than

the posterior density of the current parameter value. However, if this is not the case, then

we should accept the proposed value θ? with some probability. An instinctive way to achieve

this is to calculate the ratio of these densities, which can be done by equation (1) and the
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use of a correction factor. The correction factor is the ratio of the proposal distribution used

to propose θ?, where the numerator is the proposal distribution centered at the proposed

value and evaluated at the current parameter value, conversely for the denominator. This

corrects for the jump in the stochastic process to unlikely values of θ. As a result, we obtain

the acceptance ratio

r =
f(θ?|y)

f(θ(t)|y)

J(θ(t)|θ?)

J(θ?|θ(t))
=

f(y|θ?)π(θ?)

f(y|θ(t))π(θ(t))

J(θ(t)|θ?)

J(θ?|θ(t))
. (1)

After the acceptance ratio r has been computed, the next iteration parameter value is

θ(t+1) =

θ? with probability α = min{r, 1}

θ(t) otherwise.

(2)

An important feature of the acceptance ratio above is that if the proposal distribution is a

symmetric distribution, then by definition we have that J(θ(t)|θ?) = J(θ?|θ(t)), and therefore

the correction factor is not necessary. A desirable property of the proposal distribution is

that the proposed value will get accepted between 20% and 50% of the time in order to

have low correlation in the sequence of parameter estimates, but to still allow the chain to

move around the parameter space to converge as efficiently as possible. Therefore, one must

consider a proposal distribution that has this property, and this can, in certain situations,

be difficult. With this said, we discuss in section 2.4 a smarter way to obtain a nice proposal

distribution that will yield much higher acceptance rates while keeping the correlation of the

sequence of parameters low.

2.3 Generalized Linear Models (GLMs)

A generalized linear model is a generalization of regular linear regression to response types

other than normally distributed. GLMs are constructed with three primary components. The

first, and most obvious, is the random variable. This will specify the conditional distribution

of the response variable, Yi, given the covariates in the model. It is assumed that this

distribution is a member of the exponential family, that is the distribution can be written

in the form

f(yi|θi) = exp

{
yiθi − b(θi)
ai(φ)

+ c(yi, φ)

}
,
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where the parameters of interest are captured in the canonical parameters θi and φ is the

dispersion parameter, typically associated with the variance of the distribution. The second

component is a linear predictor, which is most commonly a linear function of the regressors

ηi = x′iβ = β0 + β1xi1 + ...+ βpxip,

where xi is a p-dimensional vector of covariates for the ith observation. The last component

for a GLM is a smooth and invertible link function, g(·), which relates the mean response to

the linear predictor. That is to say that if µi = E(Yi|θi), then

g(µi) = ηi = x′iβ.

A link function that one can consider in every situation is the canonical link θi = ηi. However,

there are many link functions that could be used, which depends on the situation or beliefs

of how the true mean structure is related to the predictors.

2.4 Bayesian Interatively Weighted Least Squares (BIWLS)

Under the GLM framework, the parameters of interest include the regression coefficents

vector β. We begin by placing a normal prior distribution on β, say N(a,R), to obtain

a nice proposal distribution for β. More specifically, the posterior distribution for β is

considered to be of the form

f(β) ∝ exp

{
−1

2
(β − a)′R−1(β − a) +

∑
i

yiθi − b(θi)
φ

}
, (3)

where the first term in the exponential is from the prior distribution and the second term is

the likelihood term, which depends on β through θi. The idea proposed by Gamerman is to

approximate the posterior distribution with a normal distribution. By carrying out a second

order Taylor expansion of the likelihood term

`(β) =
∑
i

yiθi − b(θi)
φ
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around some value of β, say β(t−1), and combining terms, we obtain a normal distribution

with mean vector and covariance matrix

m(t) = C(t) ×
(

R−1a +
1

φ
X′W(β(t−1))ỹ(β(t−1))

)
(4.1)

C(t) =

(
R−1 +

1

φ
X′W(β(t−1))X

)−1

(4.2)

respectively, where we define ỹi(β
(t−1)) as a vector of transformed observations with entries

ỹi(β
(t−1)) = ηi + (yi − µi)g

′(µi)

and W(β(t−1)) as a diagonal matrix with entries

Wii(β
(t−1)) =

1

b′′(θi)g′(µi)2
.

This vector and matrix arise during the Taylor expansion and recombining with the prior

terms to obtain the proposal distribution as a normal distribution. This is the distribution

used as the proposal distribution, denoted by J(β), since it is a good approximation to the

posterior distribution in (3). The BIWLS method is summarized as follows:

1) start with β(0) and set t = 1;

2) propose β? by sampling from the proposal distribution J(β);

3) update β(t+1) according to equation (2);

4) increase t by 1 and return to step 2.

An important note that should be made is that even though the proposal distribution J(β),

which is the approximate posterior distribution, is a normal distribution, its parameters

m(t) and C(t) depend on the previous iterate β(t−1), and therefore is not symmetric, i.e.

J(β(t) | β(t−1)) 6= J(β(t−1) | β(t)). This will require the correction factor in computing the

acceptance ratio r in step 3. Furthermore, for clarity, the ratio

J(θ(t)|θ?)

J(θ?|θ(t))

in (1) is as follows: The numerator is the density of β(t) from N(m?,C?), where m? and

C? are the equations in (4.1) and (4.2) using the proposed value β?, and the denominator is
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the density of β? from N
(
m(t),C(t)

)
. The construction of m(t) and C(t) yields the posterior

mode and an approximate posterior covariance matrix for β. Because of this, the acceptance

rate in this method is extremely high, usually 90% and higher, but also keeps the correlation

low, and this is the benefit of using this method.

The above methodology is easily extended to models with random effects included. The

key difference is that the link function is now given by

g′(µi) = ηi = x′iβ + z′iγ

where zi is a vector of additional covariates and γ is a vector of random effects with the prior

distribution N(0,Σ). Consequently, the proposal distribution for β is normal with moments

m(t) = C(t) ×
(

R−1a +
1

φ
X′W(β(t−1))

(
ỹ(β(t−1))− Zγ(t−1)

))
C(t) =

(
R−1 +

1

φ
X′W(β(t−1))X

)−1

.

Similarly, the proposal distribution for the random effects γ is normal with moments

m(t) = C(t) ×
(

1

φ
Z′W(γ(t−1))

(
ỹ(γ(t−1))−Xβ(t−1)

))
C(t) =

(
Σ−1 +

1

φ
Z′W(γ(t−1))Z

)−1

.

3 Discussion

In this paper, we have summarized the main points of Dani Gamerman’s paper, Sampling

from the posterior distribution in generalized linear mixed models. Bayesian statistics is a

very useful field of statistics, but it comes with drawbacks as does any statistical method.

One drawback is the computation time with the Metropolis-Hastings algorithm, i.e. time

until convergence. Gamerman’s proposed BIWLS method is a great solution as it allows

for high acceptance rates. One can always accept the proposed value and have a perfect

acceptance rate, but the values probably are not good. Therefore, high acceptance rates are

not always desirable, but here it is. The proposal distribution J(β) is a good approximation

to the true posterior distribution, and hence draws from this are approximate draws from

the true distribution, i.e. the distribution that we do want draws from. As a result, smaller
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chains are necessary for convergence and so the computation time can be drastically reduced

using the BIWLS method. Another point to make is that if one specifies a flat prior for

β, i.e. R → ∞, then the original iteratively weighted least squares method is recovered.

Therefore, this method draws similarities to Frequentist techniques. A drawback of this

method is that in some cases, the starting values can affect the algorithm. However, initial

starting values are easily obtainable in many ways, such as fitting a simple linear model and

using the estimates as the starting value.
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